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This paper presents a direct model reference adaptive controller for single-input/single-output discrete-time (and

thus sampled-data) systems that are possibly nonminimum phase. The adaptive control algorithm requires

knowledge of the nonminimum-phase zeros of the transfer function from the control to the output. This controller

uses a retrospective performance, which is a surrogate measure of the actual performance, and a cumulative

retrospective cost function, which is minimized by a recursive-least-squares adaptation algorithm. This paper

develops the retrospective cost model reference adaptive controller and analyzes its stability.

I. Introduction

T HE objective of model reference adaptive control (MRAC) is to
control an uncertain system so that it behaves like a given

referencemodel in response to specified referencemodel commands.
MRAC has been studied extensively for both continuous-time [1–8]
and discrete-time systems [7–12]. In addition, MRAC has been
extended to various classes of nonlinear systems [13]. However, the
direct adaptive control results of [1–13], as well as related adaptive
control techniques [14,15], are restricted to minimum-phase
systems.

For nonminimum-phase systems, [16] shows that periodic control
can be used, but this approach entails periods of open-loop operation.
In [17], an adaptive controller is presented for systems with known
nonminimum-phase zeros; however, this controller has only local
convergence and stability properties. Another approach to
addressing systems with nonminimum-phase zeros is to remove
the nonminimum-phase zeros by relocating sensors and actuators or
by using linear combinations of sensor measurements. However,
constraints on the number and placement of sensors and actuators can
make this approach infeasible. For example, a tail-controlled missile
with its inertialmeasurement unit located behind the center of gravity
is known to be nonminimum phase [18], and an aircraft’s elevator-
to-vertical-acceleration transfer function is often nonminimum
phase [19].

Retrospective cost adaptive control (RCAC) is a discrete-time
adaptive control technique for discrete-time (and thus sampled-data)
systems that are possibly nonminimum phase [20–23]. RCAC uses a
retrospective performance, which is the actual performancemodified
based on the difference between the actual past control inputs and the
recomputed past control inputs. The structure of the retrospective
performance is reminiscent of the augmented error signal presented
in [1] and used in [2,4,10,13]; however, the construction and purpose
of the retrospective performance differs from the augmented
error signal. More specifically, the retrospective performance is
constructed using knowledge of the system’s nonminimum-phase

zeros, thus accounting for their presence. In contrast, the augmented
error signals in [1,2,4,10,13] are used to accommodate reference
models that are not strictly positive real but do not accommodate
nonminimum-phase zeros in the plant.

RCAC has been demonstrated on multi-input/multi-output
nonminimum-phase systems [20,21]. Furthermore, the stability of
RCAC for single-input/single-output systems is analyzed in [23] for
the model reference adaptive control problem and in [22] for
command following and disturbance rejection. A related controller
construction is used in [24] for continuous-time minimum-phase
systems that have real nonminimum-phase zeros due to sampling.

The adaptive laws in [20–23] are derived by minimizing a
retrospective cost, which is a quadratic function of the retrospective
performance. In particular, [20] uses an instantaneous retrospective
cost, which is a function of the retrospective performance at the
current time and is minimized by a gradient-type adaptation
algorithm. In contrast, [21] uses a recursive-least-squares (RLS)
adaptation algorithm tominimize a cumulative retrospective cost that
is a function of the retrospective performance at the current time step,
as well as all previous time steps.

The present paper develops a retrospective cost model reference
adaptive control (RC-MRAC) algorithm for discrete-time systems
that are subject to unknown disturbances and potentially non-
minimum phase. The reference model is assumed to satisfy a
model-matching condition, where the numerator polynomial of
the reference model duplicates the nonminimum-phase zeros of
the open-loop system. This condition reflects the fact that the
nonminimum-phase zeros of the plant cannot be moved through
feedback or pole-zero cancellation. Numerical examples show that
the plant’s nonminimum-phase zeros need not be known exactly.

The present paper goes beyond prior work on retrospective cost
adaptive control [20,21] by analyzing the stability of the closed-loop
system for plants that are nonminimum phase. In addition, the
present paper extends the control architecture of [20,21] to a more
general MRAC architecture with unmatched disturbances. The
current paper focuses on the single-input/single-output problem for
clarity in the presentation of the assumptions, as well as the main
stability results. Also, unlike [20], the current paper considers an
RLS adaptation algorithm, as in [21]. Preliminary versions of some
results in this paper are given in [22,23].

Section II of this paper describes the adaptive control problem,
while Sec. III presents the RC-MRACalgorithm. Section IV presents
a nonminimal-state-space realization for use in subsequent sections.
SectionV proves the existence of an ideal fixed-gain controller, and a
closed-loop error system is constructed in Sec. VI. Section VII
presents the closed-loop stability analysis. Section VIII provides
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numerical examples, including a multiple-degree-of-freedom mass-
spring-dashpot system, as well as the NASA Generic Transport
Model (GTM). Finally, conclusions are given in Sec. IX.

II. Problem Formulation

Consider the discrete-time system:

y�k� �
Xn
i�1
��iy�k � i� �

Xn
i�d

�iu�k � i� �
Xn
i�0

�iw�k � i� (1)

where k � 0, �1; . . . ; �n 2 R, �d; . . . ; �n 2 R, �0; . . . ; �n 2 R1�lw ,
y�k� 2 R is the output, u�k� 2 R is the control, w�k� 2 Rlw is
the exogenous disturbance, and the relative degree is d > 0.
Furthermore, for all i < 0, u�i� � 0 and w�i� � 0, and the initial
condition is x0 ≜ � y��1� 	 	 	 y��n� 
T 2 Rn.

Let q and q�1 denote the forward-shift and backward-shift
operators, respectively. For all k � 0, Eq. (1) can be expressed as

��q�y�k � n� � ��q�u�k � n� � ��q�w�k � n� (2)

where ��q� and ��q� are coprime, and

��q�≜ qn � �1qn�1 � �2qn�2 � 	 	 	 � �n�1q� �n;

��q�≜ �dq
n�d � �d�1qn�d�1 � �d�2qn�d�2 � 	 	 	 � �n�1q� �n;

��q� � qn�0 � qn�1�1 � qn�2�2 � 	 	 	 � q�n�1 � �n

Next, consider the reference model

�m�q�ym�k � nm� � �m�q�r�k � nm� (3)

where k � 0, ym�k� 2 R is the reference model output, r�k� 2 R is
the bounded reference model command, �m�q� is a monic
asymptotically stable polynomial with degree nm > 0, �m�q� is a
polynomial with degree nm � dm � 0, where dm > 0 is the relative
degree of Eq. (3), and �m�q� and �m�q� are coprime. Furthermore,
for all i < 0, r�i� � 0, and the initial condition of Eq. (3) is
xm;0 ≜ � ym��1� 	 	 	 ym��nm� 
T 2 Rnm .

Next, define the performance:

z�k�≜ y�k� � ym�k�

The goal is to develop an adaptive output-feedback controller that
generates a control signal u�k� such that y�k� asymptotically follows
ym�k� for all bounded reference model commands r�k� in the
presence of the disturbance w�k�. The goal is thus to drive the
performance z�k� to zero. The following assumptions are made
regarding the open-loop system (1):

Assumption 1. d is known.
Assumption 2. �d is known.
Assumption 3. If � 2 C, j�j � 1, and ���� � 0, then � and its

multiplicity are known.
Assumption 4. There exists a known integer �n such that n � �n.
The parameters ��q�, ��q�, ��q�, n, and x0 are otherwise

unknown.
Assumption 2 states that the first nonzero Markov parameter �d

from the control to the output is known. In discrete-time adaptive
control for minimum-phase systems, it is common to assume that the
sign of �d is known and an upper bound on the magnitude of �d
is known [9,10,14,15], which are weaker assumptions than
Assumption 2.

Assumption 3 implies that the nonminimum-phase zeros from the
control to the output (i.e., the roots of ��q� that lie on or outside the
unit circle) are known. Assumption 3 is weaker than the classical
direct adaptive control assumption that there are no nonminium-
phase zeros from the control to the output [1–15].

While the analysis presented herein relies onAssumptions 2 and 3,
numerical examples demonstrate that RC-MRAC is robust to errors
in the model information assumed by Assumptions 2 and 3. More
specifically, the numerical examples presented [20,25] suggest that
Assumption 2may be able to beweakened to the assumption that the

sign of �d is known and an upper bound on the magnitude of �d is
known. Furthermore, the current paper presents numerical examples
that show that RC-MRAC is robust to errors in the nonminimum-
phase zero estimates. Additional numerical examples are presented
in [25].

Next, the following assumptions are made regarding the
exogenous disturbance w�k�:

Assumption 5. The signalw�k� is bounded, and, for all k � 0,w�k�
satisfies

�w�q�w�k� � 0

where �w�q� is a nonzero monic polynomial whose roots are on the
unit circle and do not coincide with the roots of ��q�.

Assumption 6. There exists a known integer �nw such that
nw ≜ deg�w�q� � �nw.

The parameters �w�q� and nw are otherwise unknown, andw�k� is
not assumed to be measured.

Finally, the following assumptions are made regarding the
reference model (3):

Assumption 7. If � 2 C, j�j � 1, and���� � 0, then�m��� � 0 and
the multiplicity of � with respect to ��q� equals the multiplicity of �
with respect to �m�q�.

Assumption 8. dm � d.
Assumption 9. �m�q�, �m�q�, ym�k�, and r�k� are known.
Assumption 7 implies that the numerator polynomial �m�q� of the

reference model duplicates the plant’s nonminimum-phase zeros
from the control to the output. This assumption arises from themodel
reference architecture and reflects the fact that the nonminimum-
phase zeros of the plant cannot be moved through either feedback or
pole-zero cancellation. Since the reference model duplicates the
plant’s nonminimum-phase zeros, its step response may exhibit
initial undershoot or directions reversals depending on the number of
positive nonminimum-phase zeros in the reference model. However,
the reference model can contain additional zeros, which can be
chosen to prevent initial undershoot. Furthermore, if r�k� � 0, then
the reference model (3) simplifies to �m�q�ym�k� � 0, which does
not explicitly depend on �m�q�. In this case, the RC-MRAC
controller does not depend on �m�q�, and letting �m�q� � ��q�
trivially satisfies Assumption 7.

Now, consider the factorization of ��q� given by

��q� � �d�u�q��s�q� (4)

where �u�q� and �s�q� are monic polynomials; if � 2 C, j�j � 1,
and ���� � 0, then �u��� � 0 and �s��� ≠ 0; nu � n � d is the
degree of �u�q�; and ns ≜ n � nu � d is the degree of �s�q�. Thus,
Assumption 3 is equivalent to the assumption that �u�q� is known
(and thusnu is also known). Furthermore, Assumption 7 is equivalent
to the assumption that�u�q� is a factor of�m�q�. Thus,�m�q� has the
factorization �m�q� � �u�q��r�q�, where �r�q� is a known
polynomial with degree nm � dm � nu.

III. Retrospective Performance and the Retrospective
Cost Model Reference Adaptive Controller

This section defines the retrospective performance and presents
the retrospective cost model reference adaptive control (RC-MRAC)
algorithm. First, define

rf�k�≜ q��nm�d�nu��r�q�r�k�

which can be computed from the known reference model command
r�k� and the known polynomial �r�q�. Let nc � n, and, for all
k � nc, consider the controller

u�k� �
Xnc
i�1

Li�k�y�k � i� �
Xnc
i�1

Mi�k�u�k � i� � N0�k�rf�k� (5)

where, for all i� 1; . . . ; nc, Li : N! R andMi : N! R, and N0 :
N! R are given by the adaptive laws (13) and (14) presented below.
The adaptive controller presented in this sectionmaybe implemented
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with positive controller order nc < n, but the analysis presented in
Secs. IV,V,VI, andVII requires thatnc � n. For example,we require
nc � n to prove the existence of an ideal fixed-gain controller that
drives the performance to zero. For all k � nc, the controller (5) can
be expressed as

u�k� � �T�k���k� (6)

where

��k�≜ �L1�k� 	 	 	 Lnc�k� M1�k� 	 	 	 Mnc
�k� N0�k� 
T

and, for all k � nc,

��k�≜ �y�k� 1� 	 	 	 y�k�nc� u�k� 1� 	 	 	 u�k�nc� rf�k� 
T

(7)

The controller (5) cannot be implemented for nonnegative k < nc
because, for nonnegative k < nc, u�k� depends on the initial
condition x0 of Eq. (1), which is not assumed to be known. Therefore,
for all nonnegative integers k < nc, let u�k� be given by Eq. (6),
where, for all nonnegative integers k < nc, ��k� 2 R2nc�1 is chosen
arbitrarily. The choice of ��k� for k < nc impacts the transient
performance of the closed-loop adaptive system. Numerical
simulations suggest that letting ��0� � 0 and inserting new data at
each time step as it becomes available tends tomitigate poor transient
behavior.

Next, define ��m�q�1�≜ q�nm�m�q�, ��m�q�1�≜ q�nm�m�q�, and
��u�q�1�≜ q�nu�d�u�q�. In addition, for all k � 0, define the filtered
performance

zf�k�≜ ��m�q�1�z�k� (8)

which can be interpreted as the output of a finite-impulse-response
filter whose input is z�k� and whose zeros replicate the reference
model poles. For nonnegative k < nm, zf�k� depends on
z��1�; . . . ; z��nm� [i.e., the difference between the initial conditions
x0 of Eq. (1) and the initial conditions xm;0 of Eq. (3)], which are not
assumed to be known. Therefore, for nonnegative k < nm, zf�k� is
given by (8), where the values used for z��1�; . . . ; z��nm� are
chosen arbitrarily. Furthermore, zf�k� is computable from the
measurements y�k� and ym�k�, as well as the known asymptotically
stable polynomial �m�q�.

Now, let �̂ 2 R2nc�1 be an optimization variable used to develop
the adaptive controller update equations, and, for all k � 0, define the
retrospective performance

ẑ��̂; k�≜ zf�k� � �d� ��u�q�1���k�
T�̂ � �d ��u�q�1�u�k�

� zf�k� ��T�k��̂ � �d ��u�q�1�u�k� (9)

where the filtered regressor is defined by

��k�≜ �d ��u�q�1���k� (10)

where, for all k < 0,��k� � 0. The retrospective performance (9) can
be interpreted as a modification to the filtered performance zf�k�
based on the difference between the actual past control inputs and the
recomputed past control inputs assuming that the controller
parameter vector �̂was used in the past. Next, for all k � 0, define the
retrospective performance measure:

zr�k�≜ ẑ���k�; k�

� zf�k� � �d� ��u�q�1���k�
T��k� � �d ��u�q�1���T�k���k�

(11)

Note that �d� ��u�q�1���k�
T��k� and �d ��u�q�1���T�k���k�
, which
appear in Eq. (11), are not generally equal because q�1�a�k�b�k�
 is
not generally equal to �q�1a�k�
b�k�. However, if ��k� is constant,
then

�d� ��u�q�1���k�
T��k� � �d ��u�q�1���T�k���k�


and in this case, Eq. (11) implies that zr�k� � zf�k�, that is, the
retrospective performance measure equals the filtered performance.
This provides an intuitive interpretation of theRC-MRACadaptation
law, which is presented in Theorem 1 below. Specifically, the goal of
RC-MRAC is to minimize zr�k� and by extension zf�k�, since zr�k�
can be viewed as a surrogate measure of zf�k�.

To develop the RC-MRAC law, define the cumulative
retrospective cost function:

J��̂; k�≜
Xk
i�0

�k�iẑ2��̂; i� � �k��̂ � ��0�
TR��̂ � ��0�
 (12)

where � 2 �0; 1
 and R 2 R�2nc�1���2nc�1� is positive definite. The
scalar � is a forgetting factor, which allows more recent data to be
weighted more heavily than past data. The next result along with the
controller (5) provides the RC-MRAC algorithm.

Theorem 1. Let P�0� � R�1 and ��0� 2 R2nc�1. Then, for each
k � 0, the unique global minimizer of the cumulative retrospective
cost function (12) is given by

��k� 1� � ��k� � P�k���k�zr�k�
���T�k�P�k���k� (13)

where

P�k� 1� � 1

�

�
P�k� � P�k���k��

T�k�P�k�
���T�k�P�k���k�

�
(14)

Proof. Let �P�0� � R�1, and, for all k � 0, define

�P�k� 1�≜
�
�kR�

Xk
i�0

�k�i��i��T�i�
��1

� �� �P�1�k� ���k��T�k�
�1

Using the matrix inversion lemma ([5], Lemma 2.1) implies that

�P�k� 1� � 1

�
�P�k� � 1

�2
�P�k���k�

�
�
1� 1

�
�T�k� �P�k���k�

��1
�T�k� �P�k�

� 1

�

�
�P�k� �

�P�k���k��T�k� �P�k�
���T�k� �P�k���k�

�
(15)

Now, it follows fromEqs. (14) and (15) thatP�k� and �P�k� satisfy the
same difference equation. Since, in addition,P�0� � �P�0�, it follows
that P�k� � �P�k�.

Next, it follows from Eq. (9) that

J��̂; k� � �̂T�1�k��̂� �2�k��̂� �3�k�

where

�1�k�≜ �P�1�k� 1� � P�1�k� 1�

�2�k�≜ �2�k�T�0�R� 2
Xk
i�0

�k�i�zf�i� � �d ��u�q�1�u�i�
�T�i�

�3�k�≜ �k�T�0�R��0� �
Xk
i�0

�k�i�zf�i� � �d ��u�q�1�u�i�
2

The cost function (12) has the unique global minimizer

��k� 1�≜ �1
2
��11 �k��T2 �k�

which implies that
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��k� 1�

� P�k� 1�
�
�kR��0� �

Xk
i�0

�k�i�zf�i� � �d ��u�q�1�u�i�
��i�
�

� P�k� 1�
�
� �
2
�T2 �k � 1� � �zf�k� � �d ��u�q�1�u�k�
��k�

�

� P�k� 1���P�1�k���k� � �zf�k� � �d ��u�q�1�u�k�
��k�


Adding and subtracting ��k��T�k���k� to the right-hand side and
using Eq. (11) yields

��k� 1� � P�k� 1���P�1�k���k� ���k��T�k���k� ���k�zr�k�

� P�k� 1��P�1�k� 1���k� ���k�zr�k�

� ��k� � P�k� 1���k�zr�k� (16)

Finally, it follows from Eq. (14) that

P�k� 1���k� � 1

�

�
���T�k�P�k���k�
���T�k�P�k���k�P�k���k�

� P�k���k��
T�k�P�k���k�

���T�k�P�k���k�

�

� P�k���k�
���T�k�P�k���k� (17)

and combining Eq. (16) with Eq. (17) yields Eq. (13). □

Therefore, the RC-MRACalgorithm is given byEqs. (6), (13), and
(14), where ��k�, ��k�, and zr�k� are given by Eqs. (7), (10), and
(11), respectively. The RC-MRAC architecture is shown in Fig. 1.
RC-MRAC uses the RLS-based adaptive laws (13) and (14), where
P�k� is the RLS covariance matrix. The initial conditionP�0� � R�1
of the covariance matrix impacts the transient performance and
convergence speed of the adaptive controller, and is the primary
tuning parameter for the adaptive controller. For example, increasing
the singular values of P�0� tends to increase the speed of
convergence; however, convergence behavior is affected by other
factors, such as the initial condition ��0� and the persistency of
excitation in ��k�.

The remainder of this paper is devoted to analyzing the stability
properties of the closed-loop adaptive system and providing
numerical examples.

IV. Nonminimal-State-Space Realization

A nonminimal-state-space realization of the time-series model (1)
is used to analyze the stability of the closed-loop adaptive system.
The state ��k� of this nonminimal-state-space realization consists

entirely of measured information, specifically, past values of y and u,
as well as the current value of rf. To construct this realization, define

Np ≜

0 	 	 	 0 0

1 0 0

..

. . .
. ..

. ..
.

0 	 	 	 1 0

2
664

3
775 2 Rp�p; Ep ≜

1

0�p�1��1

� �
2 Rp

where p is a positive integer. Next, for all k � nc, consider the
(2nc � 1)th-order nonminimal-state-space realization of Eq. (1)
given by

��k� 1� �A��k� � Bu�k� �D1 w�k� �Drrf�k� 1� (18)

y�k� � C��k� �D2 w�k� (19)

where

A≜Anil � E2nc�1C 2 R�2nc�1���2nc�1� (20)

A nil ≜
N nc

0nc�nc 0nc�1
0nc�nc N nc

0nc�1
01�nc 01�nc 0

2
4

3
5 2 R�2nc�1���2nc�1� (21)

B ≜
0nc�1
Enc
0

2
4

3
5 2 R�2nc�1��1 (22)

C≜ � � �1 	 	 	 � �n 01��nc�n�

01��d�1� �d 	 	 	 �n 01��nc�n�1�
 2 R1��2nc�1� (23)

D1 ≜ E2nC�1D2 2 R�2nc�1��lw�n�1�

D2 ≜ � �0 	 	 	 �n 
 2 R1�lw�n�1�

Dr ≜ � 01�2nc 1 
T 2 R�2nc�1��1 (24)

and  w�k�≜ �wT�k� 	 	 	 wT�k � n� 
T 2 Rlw�n�1�.
The triple �A;B; C� is stabilizable and detectable but is neither

controllable nor observable. In particular, �A;B; C� has n
controllable and observable eigenvalues, while �A;B� has nc � n�
1 uncontrollable eigenvalues at 0, and �A; C� has 2nc � n� 1
unobservable eigenvalues at 0.

V. Ideal Fixed-Gain Controller

This section proves the existence of an ideal fixed-gain controller
for the open-loop system (1). This controller, whose structure is
illustrated in Fig. 2, is used in the next section to construct an
error system for analyzing the closed-loop adaptive system. An
ideal fixed-gain controller consists of four parts, specifically, a
feedforward controller whose input is rf; a precompensator that
cancels the stable zeros of the open-loop system (i.e., the roots of
�s�q�); an internal model of the exogenous disturbance dynamics
�w�q�; and a feedback controller that stabilizes the closed loop.

Fig. 1 Schematic diagram of the RC-MRAC architecture given by

Eqs. (6), (13), and (14).

Fig. 2 Schematic diagram of the closed-loop system with the ideal

fixed-gain controller.
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For more information on internal model control in discrete time,
see [26].

For all k � nc, consider the system (1) with u�k� � u�k�, where
u�k� is the ideal control. More precisely, for all k � nc, consider the
system

y�k� � �
Xn
i�1

�iy�k � i� �
Xn
i�d

�iu�k � i� �
Xn
i�0

�iw�k � i�

(25)

where, for all k � nc, u�k� is given by the strictly proper ideal fixed-
gain controller:

u�k� �
Xnc
i�1

L;iy�k � i� �
Xnc
i�1

M;iu�k � i� � Nrf�k� (26)

where L;1; . . . ; L;nc 2 R, M;1; . . . ;M;nc 2 R, N 2 R, and the
initial condition at k� nc for Eqs. (25) and (26) is

�;0 ≜ �y�nc � 1� 	 	 	 y�0� u�nc � 1� 	 	 	 u�0� rf�nc� 
T

For all k � nc, the ideal control u�k� can be written as

u�k� � �T�k�� (27)

where

� ≜ �L;1 	 	 	 L;nc M;1 	 	 	 M;nc N
T

and

��k�≜ �y�k � 1� 	 	 	 y�k � nc�
u�k � 1� 	 	 	 u�k � nc� rf�k�
T

Therefore, it follows from Eqs. (18–24) and (27) that, for all k � nc,
the ideal closed-loop system (25) and (26), has the (2nc � 1)th order
nonminimal-state-space realization

��k� 1� �A��k� �D1 w�k� �Drrf�k� 1� (28)

y�k� � C��k� �D2 w�k� (29)

where

A  ≜A� B�T �Anil �
EncC
Enc�

T


0

2
4

3
5 (30)

and the initial condition is ��nc� � �;0.
The following result guarantees the existence of an ideal fixed-

gain controller of the form in Eq. (26) with certain properties that are
needed for the subsequent stability analysis.

Theorem 2. Let nc satisfy

nc � max�n� 2nw; nm � nu � d� (31)

Then there exists an ideal fixed-gain controller (26) of order nc such
that the following statements hold for the ideal closed-loop system
consisting of Eqs. (25) and (26), which has the (2nc � 1)th-order
nonminimal-state-space realization (28–30):

1) For all initial conditions �;0 and for all k � k0 ≜ 2nc�
nu � d,

��m�q�1�y�k� � ��m�q�1�r�k� (32)

and thus,

��m�q�1�y�k� � ��m�q�1�ym�k� (33)

2) A is asymptotically stable.

3) For all initial conditions �;0, u�k� is bounded.
4) For all k � k0 and all sequences e�k�,

�d ��u�q�1�e�k� � ��m�q�1�
�Xk�nc
i�1

CAi�1
 Be�k � i�

�
(34)

The proof of Theorem 2 is in Appendix A. The lower bound on the
controller order, given by Eq. (31), is a sufficient condition to
guarantee the existence of an ideal fixed-gain controller. If there is no
disturbance (i.e., nw � 0) and the reference model is selected such
that its order satisfiesnm � n� nu � d, thenEq. (31) is satisfied by a
controller order greater than or equal to the order n of the plant.

Property 4 of Theorem 2 is a time-domain property that has the
z-domain interpretation

C �zI �A��1B�
�d�u�z�znm�nu�d

�m�z�
(35)

which implies that the nonminimum-phase zeros of the closed-loop
transfer function (35) are exactly the nonminimum-phase zeros of the
open-loop system, that is, the roots of�u�q�. Furthermore, Eq. (35) is
the closed-loop transfer function from a control input perturbation e
(that is, the amount that the actual control signal differs from the
control signal generated by the ideal controller) to the performance z.
In the subsequent sections of this paper, Eq. (34) is used to relate
zf�k� and zr�k� to the controller-parameter-estimation error
��k� � �.

VI. Error System

Now, an error system is constructed using the ideal fixed-gain
controller (which is not implemented) and the adaptive controller
presented in Sec. III. Since n and nw are unknown, the lower bound
for the controller ordernc given byEq. (31) is unknown. Thus, for the
remainder of this paper, let nc satisfy the lower bound

nc � max� �n� 2 �nw; nm � nu � d� (36)

where Assumptions 1, 3, 4, 6, and 9 imply that the lower bound on nc
given by Eq. (36) is known. Furthermore, since, by Assumptions 4
and 6, n � �n and nw � �nw, it follows that Eq. (36) implies Eq. (31).

Next, let � 2 R2nc�1 denote the ideal fixed-gain controller given
by Theorem 2, and, for all k � nc, let ��k� denote the state of the
ideal closed-loop system (28) and (29), where the initial condition is
�;0 � ��nc� � ��nc�. Furthermore, define k0 ≜ 2nc � nu � d.
For all k � nc, the closed-loop system consisting of Eqs. (6), (18),
and (19) becomes

��k� 1� �A��k� � B�T�k� ~��k� �D1 w�k� �Drrf�k� 1�
(37)

y�k� � C��k� �D2 w�k� (38)

where ~��k�≜ ��k� � � and A is given by Eq. (30)
Now, construct an error system by combining the ideal closed-

loop system (28) and (29) with the adaptive closed-loop system (37)
and (38). For all k � nc, define the error state

~��k�≜ ��k� � ��k�

and subtract Eqs. (28) and (29) from Eqs. (37) and (38) to obtain, for
all k � nc,

~��k� 1� �A ~��k� � B�T�k� ~��k� (39)

~y�k� � C ~��k� (40)

where

~y�k�≜ y�k� � y�k�

The following result relates zf�k� to ~��k�.
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Lemma 1. Consider the open-loop system (1) with the
feedback (6). Then, for all initial conditions x0, all sequences ��k�,
and all k � k0,

zf�k� � �d ��u�q�1���T�k� ~��k�
 (41)

Proof. For all k � nc, the error system (39) and (40) has the
solution

~y�k� � CAk�nc
 ~��nc� �

Xk�nc
i�1

CAi�1
 B�T�k � i� ~��k � i�

Since ��nc� � ��nc� it follows that ~��nc� � 0, and thus, for all
k � nc,

~y�k� �
Xk�nc
i�1

CAi�1
 B�T�k � i� ~��k � i�

which implies that, for all k � nc � nm,

��m�q�1� ~y�k� � ��m�q�1�

2
4Xk�nc
i�1

CAi�1
 B�T�k � i� ~��k � i�

3
5

Next, it follows fromproperty 4 of Theorem2with e�k� � �T�k� ~��k�
that, for all k � k0,

��m�q�1� ~y�k� � �d ��u�q�1���T�k� ~��k�


Finally, note that

��m�q�1� ~y�k� � ��m�q�1�y�k� � ��m�q�1�y�k�

and it follows from statement 1 of Theorem 2 that ��m�q�1�
y�k� � ��m�q�1�ym�k�. Therefore, for all k � k0, zf�k��
��m�q�1� ~y�k�, thus verifying Eq. (41). □

Lemma 1 relates zf�k� to ~��k�. Although Eq. (41) is not a linear
regression in ~��k�, the following result expresses the retrospective
performance measure zr�k� as a linear regression in ~��k�.

Lemma 2. Consider the open-loop system (1) with the feedback
(6). Then, for all initial conditions x0, all sequences ��k�, and all
k � k0,

zr�k� ��T�k� ~��k� (42)

Proof. Adding and subtracting �d� ��u�q�1���k�
T� to the right-
hand side of Eq. (11) yields, for all k � 0,

zr�k� � zf�k� � �d ��u�q�1���T�k� ~��k�
 � �d� ��u�q�1���k�
T ~��k�

Next, it follows from Lemma 1 that, for all k � k0, zf�k��
�d ��u�q�1���T�k� ~��k�
 � 0, which implies that, for all k � k0,

zr�k� � �d� ��u�q�1���k�
T ~��k� ��T�k� ~��k�

thus verifying Eq. (42). □

VII. Stability Analysis

This section analyzes the stability of theRC-MRACalgorithm (6),
(13), and (14), as well as the stability of the closed-loop system. The
following lemmaprovides the stability properties ofRC-MRAC.The
proof is in Appendix B.

Lemma 3. Consider the open-loop system (1) satisfying
Assumptions 1–9, and the cumulative retrospective cost model
reference adaptive controller (6), (13), and (14), where nc satisfies
Eq. (36). Furthermore, define

��k�≜ 1

1��T�k�P�0���k� (43)

Then, for all initial conditions x0 and ��0�, the following properties
hold:

1) ��k� is bounded.
2) limk!1

P
k
j�0 ��j�z2r�j� exists.

3) For all positive integers N,

lim
k!1

Xk
j�N
k��j� � ��j � N�k2

exists.
4) If �� 1, then P�k� is bounded.
Notice that property 4 of Lemma 3 applies only if the forgetting

factor �� 1. If � < 1 and the regressor ��k� is not sufficiently rich,
then P�k� can grow without bound ([5], pp. 473–480; [10], pp. 224–
228). In practice, this effect can bemitigated by periodically resetting
the covariance matrix P�k� or by adopting the techniques discussed
in [5], pp. 473–480, and [10], pp. 224–228.

Next, let 	1; . . . ; 	nu 2 C denote the nu roots of �u�z�, and define

M�z; k�≜ znc �M1�k�znc�1 � 	 	 	 �Mnc�1�k�z �Mnc
�k�

which can be interpreted as the denominator polynomial of the
controller (6) at each time k. Before presenting the main result of the
paper, the following additional assumption is made:

Assumption 10. There exist 
 > 0 and k1 > 0 such that, for all
k � k1 and for all i� 1; . . . ; nu, jM�	i; k�j � 
.

Assumption 10 asymptotically bounds the instantaneous
controller poles (i.e., the roots of M�z; k�) away from the
nonminimum-phase zeros of Eq. (1). Thus, Assumption 10 implies
that unstable pole-zero cancellation between the plant zeros and the
controller poles does not occur asymptotically in time.

The following theorem is the main result of the paper. The proof is
in Appendix C.

Theorem 3. Consider the open-loop system (1) satisfying
Assumptions 1–10, and the cumulative retrospective cost model
reference adaptive controller (6), (13), and (14), where nc satisfies
Eq. (36). Then, for all initial conditions x0 and ��0�, ��k� is bounded,
u�k� is bounded, and limk!1z�k� � 0.

Theorem 3 invokes the assumption that there exist 
 > 0 and
k1 > 0 such that, for all k � k1 and for all i� 1; . . . ; nu,
jM�	i; k�j � 
. This assumption cannot beverified a priori. However,
the assumption jM�	i; k�j � 
 for some arbitrarily small 
 > 0 can be
verified at each time step since M�	i; k� can be computed from
known values (i.e., the roots of �u�z� and the controller parameter
��k�). In fact, if, for some arbitrarily small 
 > 0, the condition
jM�	i; k�j � 
 is violated at a particular time step, then the controller
parameter ��k� can be perturbed to ensure jM�	i; k�j � 
. For
example, ��k� can be orthogonally projected a distance 
 away from
the hyperplane in � space defined by the equation M�	i; k� � 0;
however, determining the direction and analyzing the stability
properties of this projection is an open problem. Techniques
developed to prevent pole-zero cancellation for indirect adaptive
control [27] may have application to this problem. Nevertheless,
numerical examples suggest that asymptotic unstable pole-zero
cancellation does not occur [20,21,25].

VIII. Numerical Examples

This section presents numerical examples to demonstrate RC-
MRAC. In all simulations, the adaptive controller is initialized to
zero (i.e., ��0� � 0) and �� 1. For all examples, the objective is to
minimize the performance z� y � ym. Unless otherwise stated, the
examples rely on the plant-parameter information assumed by 1–4.
No additional knowledge of the plant parameters is assumed, and no
known uncertainty sets are used.

Example 1. Lyapunov-stable, nonminimum-phase systemwithout
disturbance. Consider the Lyapunov-stable-but-not-asymptotically-
stable, nonminimum-phase system

�q � 0:7�3�q2 � 1�y�k� � 0:25�q � 1:3�
� �q � 1 � |��q � 1� |�u�k�

where y�0� � �1. For this example, it follows that n� 5, nu � 3,
d� 2, �d � 0:25, and �u�q� � �q � 1:3��q � 1 � |��q � 1� |�.
Next, consider the reference model (3), where
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�m�q� � �q � 0:5�5; �m�q� �
�m�1�
�u�1�

�u�q�

Note that the leading coefficient of �m�q� is chosen such that the
reference model has unity gain at z� 1. Finally, let r�k� be a
sequence of doublets with a period of 100 samples and an amplitude
of 10.

A controller order nc � 5 is required to satisfy Eq. (36).
Let nc � 10. The RC-MRAC algorithm (6), (13), and (14) is

implemented in feedback with P�0� � I2nc�1. The closed-loop
system is simulated for 500 time steps, and Fig. 3 shows
the time history of y, ym, z, and u. The closed-loop adaptive
system experiences transient responses for approximately half of a
period of the reference model doublet. Then RC-MRAC drives the
performance z� y � ym to zero, and thus y follows ym.

Next, the controller order nc is increased to explore the sensitivity
of the closed-loop performance to the value of nc. For nc�
10; 20; . . . ; 100, the closed-loop system is simulated, where all

0 50 100 150 200 250 300 350 400 450 500
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−20

−10

0

10

20

0 50 100 150 200 250 300 350 400 450 500
−30

−20
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0
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20

30

y(k)
y

m
(k)

Fig. 3 Lyapunov-stable, nonminimum-phase plant without disturbance. The RC-MRAC algorithm (6), (13), and (14) is implemented in feedback with

nc � 10, �� 1, P�0� � I2nc�1, and ��0� � 0. The adaptive controller drives z to zero.
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Fig. 4 Lyapunov-stable, nonminimum-phase plant without disturbance. The RC-MRAC algorithm (6), (13), and (14) is implemented in feedback with

nc � 40, �� 1, P�0� � I2nc�1, and ��0� � 0. The closed-loop performance is comparable to that shown in Fig. 3.
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parameters other than nc are the same as above. The closed-loop
performance in this example is insensitive to the choice of nc
provided that nc � 5, which is required to satisfy Eq. (36). For
this example, the worst performance is obtained by letting
nc � 40. Figure 4 shows the time history of y, ym, z, and u with
nc � 40. Over the interval of approximately k� 30 to k� 80,
the closed-loop performance shown in Fig. 4 is slightly worse

than the closed-loop performance shown in Fig. 3; however, the
closed-loop performances are comparable over the rest of the
time history.

Example 2. Lyapunov-stable, nonminimum-phase system with
disturbance. Reconsider the Lyapunov-stable, nonminimum-phase
system fromExample 1with an unknown external disturbance.More
specifically, consider

0 50 100 150 200 250 300 350 400 450 500
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Fig. 5 Lyapunov-stable, nonminimum-phase plant with disturbance. The RC-MRAC algorithm (6), (13), and (14) is implemented in feedback with

nc � 10, �� 1, P�0� � I2nc�1, and ��0� � 0. The adaptive controller drives z to zero. Thus, y follows ym while rejecting w.
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Fig. 6 Lyapunov-stable, nonminimum-phase plant with disturbance and 10% error in the estimates of the nonminimum-phase zeros. The RC-MRAC

algorithm (6), (13), and (14) is implemented in feedback with nc � 10, �� 1, P�0� � I2nc�1, and ��0� � 0. The adaptive controller yields over 70%

improvement in the performance z relative to the open-loop performance.
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�q � 0:7�3�q2 � 1�y�k� � 0:25�q � 1:3��q � 1 � |�
� �q � 1� |�u�k� � �q � 2��q � 0:9�w�k�

where the external disturbance isw�k� � 0:3 sin�0:2�k�. Notice that
the disturbance-to-performance transfer function is notmatchedwith
the control-to-performance transfer function. Thus, the disturbance
must be rejected through the system dynamics. Furthermore, note
that no information about the disturbance is available to the adaptive
controller, that is, the amplitude, frequency, and phase of the
disturbance are unknown.

The controller order is nc � 10, which satisfies Eq. (36). All other
parameters remain the same as in Example 1. The RC-MRAC
algorithm (6), (13), and (14) is implemented in feedback with
P�0� � I2nc�1. The closed-loop system is simulated for 500 time
steps, and Fig. 5 shows the time history of y, ym, z, and u. RC-MRAC
drives the performance z to zero, and thus y follows ym while
rejecting the unknown exogenous disturbance w.

Example 3. Lyapunov-stable, nonminimum-phase system with
disturbance and uncertain nonminimum-phase zeros. Reconsider the
Lyapunov-stable, nonminimum-phase systemwith disturbance from
Example 2, but let the estimates of the nonminimum-phase zeros
used by the controller have 10% error. Specifically, let the estimate of
�u�q�, which is used by the reference model as well as the adaptive

law, be given by �q � 1:43��q � 1:1 � |1:1��q � 1:1� |1:1�. All
other parameters remain the same as in Example 2. The closed-loop
system is simulated for 500 time steps, and Fig. 6 shows the
time history of y, ym, z, and u. Figure 6 shows that there is some
performance degradation relative to Example 2 because the closed-
loop system is unable to match the reference model as required by
Assumption 7. However, the performance z is bounded and is
reduced by over 70% relative to the open-loop performance. In this
example, the error in the nonminimum-phase zero estimates can be
increased to approximately 18% without causing the closed-loop
performance to become unbounded.

Example 4. Stabilization of a plant that is not strongly stabilizable.
Consider the unstable, nonminimum-phase system

q �q � 0:1��q � 1:2�y�k� � �2�q � 1:1�u�k� (44)

where y�0� � 2. The reference command and disturbance are
identically zero; thus, z�k� � y�k� and the control objective is output
stabilization. Note that Eq. (44) is not strongly stabilizable; that is,
an unstable linear controller is required to stabilize Eq. (44)
[28]. For this problem, n� 3, nu � 1, d� 2, �d ��2, and
�u�q� � �q � 1:1�. Let nc � 3, which satisfies (36). TheRC-MRAC
algorithm (6), (13), and (14) is implemented in feedback with
�m�q� � �q � 0:1�6 and P�0� � I2nc�1. Figure 7 shows the time
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Fig. 7 Stabilization of a plant that is not strongly stabilizable. The RC-MRAC algorithm (6), (13), and (14) is implemented in feedback with nc � 3,

�� 1, P�0� � I2nc�1, and ��0� � 0. The adaptive controller forces z asymptotically to zero, thus stabilizing the plant, which is not strongly stabilizable.
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history of z, u and the three instantaneous controller poles. The
closed-loop system is simulated for 100 time steps, z tends to zero,
and the controller poles converge. For each k > 50, the instantaneous
adaptive controller has an unstable positive pole at approximately
1.96. Recall that an unstable pole is required to stabilize Eq. (44); in
particular, it follows from root locus arguments that a positive pole
larger than 1.2 is required to stabilize Eq. (44).

Next, assume that the nonminimum-phase zero that is located at
1.1 is uncertain. The RC-MRAC adaptive controller stabilizes the
output of Eq. (44) for all estimates of the nonminimum-phase zero in
the interval [1.04, 1.199]. Notice that the upper bound on this interval
is constrained by the location of the unstable pole at 1.2. Figures 8
and 9 show the time history of z, u and the three instantaneous
controller poles for the cases where the estimate of the nonminimum-
phase zero is 1.04 and 1.199, respectively.

Example 5. Sampled-data, three-mass structure. Consider the
serially connected, three-mass structure shown in Fig. 10, which is
given by

M �q� C _q� Kq� ��u 0 0 
T � �� 0 w 0 
T (45)

whereM≜ diag�m1; m2; m3�, q≜ � q1 q2 q2 
T ,

C≜

c1 � c2 �c2 0

�c2 c2 � c3 �c3
0 �c3 c3

2
64

3
75

K ≜

k1 � k2 �k2 0

�k2 k2 � k3 �k3
0 �k3 k3

2
64

3
75

u is the control,w is the exogenous disturbance, and the input gain is
�� 102. For this example, the masses are m1 � 0:1 kg, m2 �
0:2 kg and m3 � 0:1 kg; the damping coefficients are c1 � 5 kg=s,
c2 � 3 kg=s, and c3 � 4 kg=s; and the spring constants are
k1 � 11 kg=s2, k2 � 12 kg=s2, and k3 � 5 kg=s2.

The control objective is to force the position of m3 to follow the
output ym of a reference model. The continuous-time system (45) is
sampled at 20 Hz with input provided by a zero-order hold. Thus, the
sample time is Ts � 0:05 s. Although the continuous-time system
(45) fromu to y isminimum-phase [29], the sampled-data systemhas
a nonminimum-phase sampling zero located at approximately �3:4.
Thus, let �u�q� � q� 3:4. In addition, d� 1, and �d � 2=45.
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Fig. 8 Stabilization of a plant that is not strongly stabilizable with error in the estimate of the nonminimum-phase zero. The RC-MRAC algorithm (6),

(13), and (14) is implemented in feedback with nc � 3, �� 1, P�0� � I2nc�1, and ��0� � 0. The plant’s nonminimum-phase zero is located at 1.1, and RC-

MRAC uses an estimate of the nonminimum-phase zero given by 1.04. The adaptive controller stabilizes the plant, which is not strongly stabilizable.
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Next, consider the reference model (3), where �m�q��
�q � 0:3�2, and

�m�q� �
�m�1�
�u�1�

�u�q�

Furthermore, for t� kTs � 8 s, let the reference model command
r�k� be a sampled sequence of 1 s doublets with amplitude 0.5 m,
and, for t� kTs > 8 s, let the reference model command r�k� be a
sampled sinusoid with frequency 2 Hz and amplitude 1 m. Finally,

the unknown disturbance is a sampled sinusoid with frequency
3.5 Hz, amplitude 0.25 m, and a constant bias of 0.1 m. More
specifically, w�k� � 0:25 sin�7�Tsk� � 0:1.

The open-loop system is given the initial conditions q�0� �
� 0:1 0:2 0:1 
T m and _q�0� � � 0 0 0 
T m=s. The RC-
MRAC algorithm (6), (13), and (14) is implemented in feedback
with nc � 16 [which satisfies Eq. (36)] and P�0� � 102I2nc�1.
Figure 11 shows the time history of y, ym, z, and u. The closed-loop
adaptive system experiences transient responses for approximately
two periods of the reference model doublet. The adaptive controller
subsequently drives the performance z to zero, that is, y follows ym
and rejects w. Furthermore, at 8 s, the reference model input r is
changed to the 2 Hz sinusoid, and the output y continues to follow
ym with minimal transient behavior.

Example 6. NASA’s GTM. This example demonstrates RC-
MRACcontrollingNASA’sGTM [30,31] linearized about a nominal
flight condition with the following parameters:

1) Flight-path angle is 0 deg and angle of attack is 3 deg.
2) Body x-axis, y-axis, and z-axis velocities are 161.66, 0, and

7:12 ft=s, respectively.
3) Angular velocities in roll, pitch, and yaw are 0, 0, and 0 deg =s,

respectively.
4) Latitude, longitude, and altitude are 0 deg, 0 deg, and 800 ft,

respectively.
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Fig. 9 Stabilization of a plant that is not strongly stabilizable with error in the estimate of the nonminimum-phase zero. The RC-MRAC algorithm (6),

(13), and (14) is implemented in feedback with nc � 3, �� 1, P�0� � I2nc�1, and ��0� � 0. The plant’s nonminimum-phase zero is located at 1.1, and RC-

MRAC uses an estimate of the nonminimum-phase zero given by 1.199. The adaptive controller stabilizes the plant, which is not strongly stabilizable.

Fig. 10 A serially connected three-mass structure subjected to

disturbance w and control u.
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Fig. 11 Sampled-data, three-mass structure. The RC-MRAC algorithm (6), (13), and (14) is implemented in feedback with nc � 16, �� 1,

P�0� � 102I2nc�1, and ��0� � 0. The adaptive controller forces z asymptotically to zero; thus, the position ofm3 follows ym while rejecting w. Note that y

continues to follow the command ym after 8 s when r is changes to a 2 Hz sinusoid.
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Elevator Deflection
Elevator Command

Fig. 12 NASA’s GTM. The RC-MRAC algorithm (6), (13), and (14) is implemented in feedback with nc � 20, �� 1, and P�0� � 1020I2nc�1. The

adaptive controller force the aircraft’s altitude y to follow the reference model ym.
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5) Roll, pitch, and yaw angles are 0.07, 3, and 90 deg, respectively.
6) Elevator, aileron, and rudder angles are 2.7, 0, and 0 deg,

respectively.
RC-MRAC is implemented to control GTM’s behavior from

elevator to altitude. Thus, u�k� is the elevator command from its
nominal value, and y�k� is the altitude deviation from its nominal
value. The control objective is to force the altitude y�k� to follow the
output of a reference model ym�k�. The elevator dynamics are
assumed to be first order with a time constant  � 1=10 ([32], p. 59).
More specifically, the actual elevator deflection ue�t� is the output of
the elevator dynamics

 _ue�t� � ue�t� � uZOH�t�

where ue�0� � 0 and uZOH�t� is the zero-order hold of u�k�, which is
generated by RC-MRAC. The linearized elevator-to-altitude transfer
function for the continuous-time GTM model has a real
nonminimum-phase zero. With 50 Hz sampling, the sampled-data
system has a nonminimum-phase zero located at approximately
1.706, as well as a nonminimum-phase sampling zero located at
approximately �3:29. Thus, let �u�q� � �q � 1:706��q� 3:29�. In
addition, d� 1, and �d � 10�5.

Next, consider the reference model (3), where �m�q� � �q �
0:92�8 and

�m�q� �
�m�1�
�u�1�

�u�q�

The reference model is chosen such that its gain is unity at z� 1 and
its step response settles in approximately 4 s without overshoot. This
reference model results in a smooth output ym�k� for the reference
model command r�k�, which consists of a sequence of 5 ft and 10 ft
step commands.

GTM is given nonzero initial conditions relative to the nominal
flight condition described above. The RC-MRAC algorithm (6),
(13), and (14) is implemented in feedback with nc � 20 [which
satisfies Eq. (36)], �� 1, and P�0� � 1020I2nc�1. Note that the
singular values of P�0� are 1020, which allows the RC-MRAC
controller to adapt quickly. Figure 12 shows the time history of the
altitude y, the reference model altitude ym, the performance
z� y � ym, the elevator command u, and the actual elevator
deflection ue. GTM is allowed to run in open loop for 5 s in order to
demonstrate the uncontrolled response; note that the altitude drifts
upward due to the nonzero initial condition and the rigid-body
altitude mode (e.g., an initial altitude velocity causes the
uncontrolled aircraft to climb in altitude without bound). After 5 s,
the adaptive controller is turned on, and the altitude follows the
reference model after a transient period of approximately 3 to 4 s.

IX. Conclusions

The retrospective cost model reference adaptive control (RC-
MRAC) algorithm for single-input/single-output discrete-time
(including sampled-data) systems was shown to be effective for
plants that are possibly nonminimumphase and possibly subjected to
disturbances with unknown spectra. The stability analysis presented
in this paper relies on knowledge of the first nonzero Markov
parameter and the nonminimum-phase zeros of the plant. Numerical
examples demonstrated that RC-MRAC is robust to errors in
the nonminimum-phase zero estimates; however, quantification of
this robustness remains an open problem. Thus, the examples
demonstrated that RC-MRAC can provide both command following
and disturbance rejection with limited modeling information, which
need not be precisely known.

Appendix A: Proof of Theorem 2

Proof. In this proof, the ideal fixed-gain controller (26), which is
depicted in Fig. 2, is constructed and shown to satisfy statements 1–4
of Theorem 2.

Since rf�k� � q��nm�d�nu��r�q�r�k�, multiplying Eq. (26) by qnc
yields, for all k � 0,

M�q�u�k� � L�q�y�k� � N�r�q�qn1r�k� (A1)

where

M�q� � qnc �M;1qnc�1 � 	 	 	 �M;nc�1q �M;nc
L�q� � L;1qnc�1 � 	 	 	 � L;nc�1q� L;nc

n1 ≜ nc � nu � d � nm

Note that it follows from Eq. (31) that n1 � 0. Thus, it suffices to
show that there existsL�q�,M�q�, andN such that statements 1–4
are satisfied.

Define nf ≜ nc � ns � nw, and it follows from Eq. (31) that

nf � nc � ns � nw � max�nu � d� nw; nm � n � nw�

Next, let

M�q� �Mf�q��w�q��s�q� (A2)

whereMf�q� is a monic polynomial with degree nf. Now, it suffices
to show that there exists L�q�,Mf�q�, andN, such that statements
1–4 are satisfied.

To show statement 1, consider the closed-loop system consisting
of Eqs. (25) and (A1). First, it follows from Eqs. (4) and (25) that, for
all k � nc,

��q�y�k� � �d�u�q��s�q�u�k� � ��q�w�k� (A3)

Next, multiplying Eq. (A3) by Mf�q��w�q� and using Eq. (A2)
yields

Mf�q��w�q���q�y�k� � �d�u�q�M�q�u�k�
�Mf�q��w�q���q�w�k�

Using Eq. (A1) yields, for all k � nc,

�Mf�q��w�q���q� � �d�u�q�L�q�
y�k�
� �dN�u�q��r�q�qn1r�k� �Mf�q��w�q���q�w�k� (A4)

Since�w�q� is a scalar polynomial, it follows fromAssumption 5 that

Mf�q��w�q���q�w�k� �Mf�q���q��w�q�w�k� � 0

Therefore, for all k � nc, Eq. (A4) becomes

�Mf�q��w�q���q� � �d�u�q�L�q�
y�k�
� �dN�u�q��r�q�qn1r�k� (A5)

Next, letN � 1=�d, and since�m�q� � �u�q��r�q�, it follows from
Eq. (A5) that, for all k � nc,

�Mf�q��w�q���q� � �d�u�q�L�q�
y�k� � �m�q�qn1r�k� (A6)

Next, show that there exist polynomials L�q� and Mf�q� such
that

Mf�q��w�q���q� � �d�u�q�L�q� � �m�q�qn1

First, note that

degMf�q��w�q���q� � nf � nw � n� nc � nu � d
� deg�m�q�qn1

Next, the degree of Mf�q� is nf and the degree of L�q� is at
most nc � 1. Since, in addition, X�q�≜ �w�q���q� and Y�q�≜
��d�u�q� are coprime, it follows from the Diophantine equation
(see [8], Theorem A.2.5) that the roots ofMf�q�X�q� � Y�q�L�q�
can be assigned arbitrarily by choice ofL�q� andMf�q�. Therefore,
there exist polynomials L�q� andMf�q� such that

Mf�q��w�q���q� � �d�u�q�L�q� � �m�q�qn1
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Thus, for all k � nc, Eq. (A6) becomes

�m�q�qn1y�k� � �m�q�qn1r�k�

which implies that, for all k � nc � n1,

�m�q�y�k� � �m�q�r�k� (A7)

Thus, for all k � k0 ≜ nc � n1 � nm � 2nc � nu � d,

�� m�q�1�y�k� � ��m�q�1�r�k�

thus, confirming statement 1.
To show statement 2, note that, for all k � nc, the closed-loop

system (28) and (29) is a (2nc � 1)th-order nonminimal-state-space
realization of the closed-loop system (25) and (26), which has the
closed-loop characteristic polynomial

M�q���q� � ��q�L�q�
� �s�q��Mf�q��w�q���q� � �d�u�q�L�q�

� �s�q��m�q�qn1

Thus, the spectrum of A consists of the nc � n roots of
�s�q��m�q�qn1 along with nc � n� 1 eigenvalues located at 0,
which are exactly the uncontrollable eigenvalues of the open-loop
dynamics: that is, the uncontrollable eigenvalues of �A;B�.
Therefore, since �m�q� and �s�q� are asymptotically stable, it
follows thatA is asymptotically stable. Thus, verifying statement 2.

To show statement 3, it follows from Assumption 5 that w�k� is
bounded. Since, in addition, A is asymptotically stable, it follows
from Eq. (28) that ��k� is the state of an asymptotically stable linear
system with the bounded inputs  w�k� and rf�k�. Thus, ��k� is
bounded. Finally, sinceu�k� is a component of��k� 1�, it follows
that u�k� is bounded.

To show statement 4, consider the (2nc � 1)th-order nonminimal-
state-space realization (28) and (29), which, for all k � nc, has the
solution

y�k� � CAk�nc
 ��nc� �

Xk�nc
i�1

CAi�1
 Drrf�k � i� 1�

�
Xk�nc
i�1

CAi�1
 D1 w�k � i� �D2 w�k�

which implies that

�m�q�y�k� � �m�q��CAk�nc
 ��nc�


� �m�q�
�Xk�nc
i�1

CAi�1
 Drrf�k � i� 1�

�

� �m�q�
�Xk�nc
i�1

CAi�1
 D1 w�k � i� �D2 w�k�

�
(A8)

Comparing Eqs. (A7) and (A8) yields, for all k � nc � n1,

�m�q�r�k� � �m�q��CAk�nc
 ��nc�


� �m�q�
�Xk�nc
i�1

CAi�1
 Drrf�k � i� 1�

�

� �m�q�
�Xk�nc
i�1

CAi�1
 D1 w�k � i� �D2 w�k�

�
(A9)

Next, for all k � nc, consider the system (1), where u�k� consists
of two components: one that is generated from the ideal controller
and one that is an arbitrary sequence e�k�. More precisely, for all
k � nc, consider the system

ye�k� � �
Xn
i�1

�iye�k � i� �
Xn
i�d

�iue�k � i� �
Xn
i�0

�iw�k � i�

(A10)

where, for all k � nc, ue�k� is given by

ue�k� �
Xnc
i�1

L;iye�k � i� �
Xnc
i�1

M;iue�k � i� � Nrf�k� � e�k�

(A11)

where L;1; . . . ; L;nc ;M;1; . . . ;M;nc ; N are the ideal controller
parameters, and the initial condition at k� nc for Eqs. (A10) and
(A11) is

�e;0� �ye�nc � 1� 	 	 	 ye�0� ue�nc � 1� 	 	 	 ue�0� rf�nc� 
T

Furthermore, let Eqs. (A10) and (A11) have the same initial
condition as the ideal closed-loop system (25) and (26), that is, let
�e;0 � �;0. For all k � nc, Eq. (A10) implies

��q�ye�k� � ��q�ue�k� � ��q�w�k� (A12)

and Eq. (A11) implies

M�q�ue�k� � L�q�ye�k� � Nqnc rf�k� � qnce�k�

or equivalently,

Mf�q��w�q��s�q�ue�k� � L�q�ye�k�
� N�r�q�qn1r�k� � qnce�k�

(A13)

Next, closing the feedback loop between Eqs. (A12) and (A13)
yields, for all k � nc,

�Mf�q��w�q���q� � �d�u�q�L�q�
ye�k�
� �dN�u�q��r�q�qn1r�k� �Mf�q��w�q���q�w�k�
� �d�u�q�qnce�k�

Since Eq. (A11) is constructed with the ideal controller parameters, it
follows from earlier in this proof that

Mf�q��w�q���q�w�k� � 0

Mf�q��w�q���q� � �d�u�q�L�q� � �m�q�qn1

N � 1=�d

Therefore, for all k � nc,

�m�q�qn1ye�k� � �m�q�qn1r�k� � �d�u�q�qnce�k�

which implies that, for all k � nc � n1,

�m�q�ye�k� � �m�q�r�k� � �d�u�q�qnm�nu�de�k� (A14)

Next, for all k � nc, consider the (2nc � 1)th-order nonminimal-
state-space realization (18–24) with the feedback (A11), which has
the closed-loop representation

�e�k� 1� �A�e�k� � Be�k� �D1 w�k� �Drrf�k� 1�;
ye�k� � C�e�k� �D1 w�k�

where the �e�k� has the same form as ��k� with ye�k� and ue�k�
replacing y�k� and u�k�, respectively. For all k � nc, this system has
the solution

ye�k� �
Xk�nc
i�1

CAi�1
 Drrf�k � i� 1� �

Xk�nc
i�1

CAi�1
 D1 w�k � i�

�D2 w�k� � CAk�nc
 �e�nc� �

Xk�nc
i�1

CAi�1
 Be�k � i�
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Multiplying both sides by �m�q� yields, for all k � nc,

�m�q�ye�k� � �m�q�
�Xk�nc
i�1

CAi�1
 Drrf�k � i� 1�

�
Xk�nc
i�1

CAi�1
 D1 w�k � i� �D2 w�k�

�

� �m�q��CAk�nc
 �e�nc�
 � �m�q�

�Xk�nc
i�1

CAi�1
 Be�k � i�

�

(A15)

Since �e�nc� � �e;0 � �;0 � ��nc�, it follows from Eqs. (A9) and
(A15) that, for all k � nc � n1,

�m�q�ye�k� � �m�q�r�k� � �m�q�
�Xk�nc
i�1

CAi�1
 Be�k � i�

�
(A16)

Finally, comparing Eqs. (A14) and (A16) yields, for all k � nc � n1,

�d�u�q�qnm�nu�de�k� � �m�q�
�Xk�nc
i�1

CAi�1
 Be�k � i�

�

and multiplying both sides by q�nm, yields, for all k � k0,

�d ��u�q�1�e�k� � ��m�q�1�
�Xk�nc
i�1

CAi�1
 Be�k � i�

�

thus verifying statement 4. □

Appendix B: Proof of Lemma 3

Proof. Subtracting � from both sides of Eq. (13) yields the
estimator-error update equation

~��k� 1� � ~��k� � P�k���k�zr�k�
���T�k�P�k���k� (B1)

Next, note from Eq. (14) that

P�k� 1���k� � 1

�

�
P�k� � P�k���k��

T�k�P�k�
���T�k�P�k���k�

�
��k�

� P�k���k�
���T�k�P�k���k� (B2)

and thus,

~��k� 1� � ~��k� � P�k� 1���k�zr�k�: (B3)

Define

VP�P�k�; k�≜ ��kP�1�k�;

�VP�k�≜ VP�P�k� 1�; k� 1� � VP�P�k�; k�

and note the RLS identity [5,7,10]

P�1�k� 1� � �P�1�k� ���k��T�k� (B4)

Evaluating �VP�k� along the trajectories of Eq. (B4) yields

�VP�k� �
1

�k�1
��P�1�k� ���k��T�k�
 � 1

�k
P�1�k�

� ��k�1��k��T�k� (B5)

Since P�1�0� is positive definite and�VP is positive semidefinite, it
follows that, for all k � 0, VP�P�k�; k� is positive definite
and VP�P�k�; k� � VP�P�k � 1�; k � 1�. Therefore, for all k � 0,
0< VP�P�0�; 0� � VP�P�k�; k�, which implies that

0< �kP�k� � P�0� (B6)

If �� 1, then Eq. (B6) implies that P�k� is bounded, which verifies
statement 4.

Next, define the positive-definite Lyapunov-like function,

V ~�� ~��k�; P�k�; k�≜ ~�
T�k�VP�P�k�; k� ~��k�

and define the Lyapunov-like difference

�V ~��k�≜ V ~�� ~��k� 1�; P�k� 1�; k� 1� � V ~�� ~��k�; P�k�; k�
(B7)

Evaluating �V ~��k� along the trajectories of the estimator-error
system (B3) and using Eq. (B5) yields

�V ~��k� � ~�
T�k��VP�k� ~��k� � 2��k�1zr�k��T�k� ~��k�

� ��k�1z2r�k��T�k�P�k� 1���k�

� ��k�1� ~�T�k���k��T�k� ~��k� � 2zr�k��T�k� ~��k�
� z2r�k��T�k�P�k� 1���k�


Next, it follows from Lemma 2 and Eq. (B2) that, for all k � k0,

�V ~��k� � ���k�1z2r�k��1 ��T�k�P�k� 1���k��

� ���k�1z2r�k�
�
1 � �T�k�P�k���k�

���T�k�P�k���k�

�

����k�1z2r�k�
�

���T�k�P�k���k�
� � ���k�z2r�k� (B8)

where

���k�≜ 1

�k�1 � �k�T�k�P�k���k� (B9)

Since V ~� is a positive-definite radially unbounded function of ~��k�
and, for k � k0, �V ~��k� is nonpositive, it follows that ~��k� is
bounded and thus ��k� is bounded. Thus, verifying statement 1.

To show statement 2, first show that

lim
k!1

Xk
j�k0

�V ~��j�

exists. Since V ~� is positive definite, and, for all k � k0, �V ~��k� is
nonpositive, it follows from Eq. (B7) that

0 � � lim
k!1

Xk
j�k0

�V ~��j�

� V ~�� ~��k0�; P�k0�; k0� � lim
k!1

V ~�� ~��k�; P�k�; k�

� V ~�� ~��k0�; P�k0�; k0�

where the upper and lower bounds imply that both limits exist. Since

lim
k!1

Xk
j�k0

�V ~��j�

exists, Eq. (B8) implies that

lim
k!1

Xk
j�k0

���j�z2r�j�

exists, and thus

lim
k!1

Xk
j�0

���j�z2r�j�

exists. Since, for all k � 0, �k�1 � 1 and �kP�k� � P�0�, it follows
from Eqs. (43) and (B9) that, for all k � 0, ��k� � ���k�, which
implies that
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lim
k!1

Xk
j�0

��j�z2r�j� � lim
k!1

Xk
j�0

���j�z2r�j�

Thus,

lim
k!1

Xk
j�0

��j�z2r�j�

exists, which verifies statement 2.
To show statement 3, first show that

lim
k!1

Xk
j�0
k��j� 1� � ��j�k2

exists. It follows from Eqs. (B1) and (B6) that

X1
j�0
k��j� 1� � ��j�k2 �

X1
j�0

���� P�j���j�zr�j�
���T�j�P�j���j�

����
2

�
X1
j�0

z2r�j�
�T�j�P2�j���j�

����T�j�P�j���j�
2

�
X1
j�0

���j�z2r�j�
�
�j�T�j�P2�j���j�
���T�j�P�j���j�

�

�
X1
j�0

���j�z2r�j�k�jP�j�kF
�

�T�j�P�j���j�
���T�j�P�j���j�

�

� kP�0�kF
X1
j�0

���j�z2r�j�
�

�T�j�P�j���j�
���T�j�P�j���j�

�

where k 	 kF denotes the Frobenius norm. Next, note that, for all
k � 0,

�T�k�P�k���k�
���T�k�P�k���k�

� 1

which implies that

lim
k!1

Xk
j�0
k��j� 1� � ��j�k2 � kP�0�kF lim

k!1

Xk
j�0

���j�z2r�j� (B10)

Since

lim
k!1

Xk
j�0

���j�z2r�j�

exists, it follows from Eq. (B10) that

lim
k!1

Xk
j�0
k��j� 1� � ��j�k2

exists. Next, let N be a positive integer and note that

X1
j�N
k��j� � ��j � N�k2 �

X1
j�N
k��j� � ��j � 1� � ��j � 1�

� ��j � 2� � 	 	 	 � ��j � N � 1� � ��j � N�k2

�
X1
j�N
�k��j� � ��j � 1�k � k��j � 1� � ��j � 2�k

� 	 	 	 � k��j � N � 1� � ��j � N�k�2

� 2N�1
X1
j�N
�k��j� � ��j � 1�k2 � k��j � 1� � ��j � 2�k2

� 	 	 	 � k��j � N � 1� � ��j � N�k2� (B11)

Since all of the limits on the right-hand side of Eq. (B11) exist, it
follows that

lim
k!1

Xk
j�N
k��j� � ��j � N�k2

exists. This verifies statement 3. □

Appendix C: Proof of Theorem 3

Proof. It follows from statement 1 of Lemma 3 that ��k� is
bounded. To prove the remaining properties, for all k � k0, define the
ideal filtered regressor

��k�≜ �d ��u�q�1���k� (C1)

and the filtered regressor error

~��k�≜��k� ���k� � �d ��u�q�1� ~��k� (C2)

Next, apply the operator �d ��u�q�1� to Eq. (39) and use Lemma 1 to
obtain the filtered error system

~��k� 1� �A ~��k� � B�d ��u�q�1���T�k� ~��k�


�A ~��k� � Bzf�k� (C3)

which is defined for all k � k0.
Next, define the quadratic function

J� ~��k��≜ ~�
T�k�P ~��k� (C4)

where P > 0 satisfies the discrete-time Lyapunov equation
P �AT

PA �Q� �I, where Q> 0 and � > 0. Note that P
exists since A is asymptotically stable. Defining

�J�k�≜ J� ~��k� 1�� � J� ~��k�� (C5)

it follows from Eq. (C3) that, for all k � k0,

�J�k� � � ~�T�k��Q� �I� ~��k� � ~�T�k�AT
PBzf�k�

� zf�k�BTP ~A ~��k� � z2f�k�BTPB

� � ~�T�k��Q� �I� ~��k�

� z2f�k�BTPB� � ~�
T�k� ~��k�

� 1

�
z2f�k�BTPAAT

PB

�� ~�T�k�Q ~��k� � �1z2f (C6)

where �1 ≜ BTPB� 1
�
BTPAAT

PB.
Now, consider the positive-definite, radially unbounded

Lyapunov-like function:

V� ~��k��≜ ln �1� a1J� ~��k���

where a1 > 0 is specified below. The Lyapunov-like difference is
thus given by

�V�k�≜ V� ~��k� 1�� � V� ~��k��

For all k � k0, evaluating �V�k� along the trajectories of Eq. (C3)
yields

�V�k� � ln �1� a1J� ~��k�� � a1�J�k�
 � ln �1� a1J� ~��k��


� ln
�
1� a1�J�k�

1� a1J� ~��k��

�
(C7)

Since, for all x > 0, ln x � x � 1, and using Eq. (C6) yields
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�V�k� � a1
�J�k�

1� a1J� ~��k��

� �a1
~�T�k�Q ~��k�

1� a1 ~�T�k�P ~��k�
� a1�1

z2f�k�
1� a1 ~�T�k�P ~��k�

� �W� ~��k�� � a1�1‘2�k� (C8)

where

W� ~��k��≜ a1
~�T�k�Q ~��k�

1� a1 ~�T�k�P ~��k�
(C9)

‘�k�≜
zf�k������������������������������������������������������

1� a1�min�P� ~�T�k� ~��k�
q (C10)

Now, show that

lim
k!1

Xk
j�0

‘2�j�

exists. First, write �u�q� as

�u�q� � �u;0qnu � �u;1qnu�1 � 	 	 	 � �u;nu�1q� �u;nu
where�u;0 � 1 and�u;1; . . . ; �u;nu 2 R. It follows fromEq. (11) that,
for all k � k0,

zf�k� � zr�k� � �d
Xnu�d
i�d

�u;i�d�
T�k � i����k� � ��k � i�
 (C11)

Using Eqs. (C10) and (C11) yields, for all k � k0,

j‘�k�j � jzr�k�j � j�dj�
Pnu�d

i�d j�u;i�djk��k � i�kk��k� � ��k � i�k������������������������������������������������������
1� a1�min�P� ~�T�k� ~��k�

q

It follows from Lemma 3 that ��k� is bounded and limk!1
k��k� � ��k � 1�k � 0. Therefore, Lemma 4 in Appendix D implies
that there exist k2 � k0 > 0, c1 > 0, and c2 > 0, such that, for all
k � k2 and all i� d; . . . ; nu � d, k��k � i�k � c1 � c2k��k�k. In
addition, note that k��k�k � k ~��k� ���k�k � k ~��k�k � k�
�k�k � k ~��k�k ��;max, where �;max ≜ supk�0k��k�k exists
because � is bounded. Therefore, for all k � k2, k��k � i�k
� c1 � c2�;max � c2k ~��k�k, which implies that

j‘�k�j � jzr�k�j � j�dj�c1 � c2�;max � c2k ~��k�k��
Pnu�d

i�d j�u;i�djk��k� � ��k � i�k������������������������������������������������������
1� a1�min�P� ~�T�k� ~��k�

q

� jzr�k�j�����������������������������������������������������
1� a1�min�P� ~�T�k� ~��k�

q � c3 � c4k ~��k�k�����������������������������������������������������
1� a1�min�P� ~�T�k� ~��k�

q
�Xnu�d
i�d
k��k� � ��k � i�k

�

where c3 ≜ �c1 � c2�;max�j�dj�max0�i�nu j�u;ij�> 0 and c4 ≜ c2
j�dj�max0�i�nu j�u;ij�> 0. Next, note that 1�����������������������������������

1�a1�min�P� ~�T �k� ~��k�
p � 1

and k ~��k�k�����������������������������������
1�a1�min�P� ~�T �k� ~��k�
p � max�1; 1=

���������������������
a1�min�P�

p
�, which implies

that

j‘�k�j � jzr�k�j�����������������������������������������������������
1� a1�min�P� ~�T�k� ~��k�

q � c5
Xnu�d
i�d
k��k� � ��k � i�k

(C12)

where c5 ≜ c3 � c4 max�1; 1=
���������������������
a1�min�P�

p
�> 0.

Next, show that a1 > 0 can be chosen such that the first term of
Eq. (C12) is less than a constant times

���������
��k�

p
jzr�k�j, which is square

summable according to statement 2 of Lemma 3. It follows from
Eq. (43) that

1

��k� � 1��T�k�P�0���k�

� 1� �max�P�0��� ~��k� ���k�
T � ~��k� ���k�


� 1� �max�P�0���2 ~�T�k� ~��k� � 2�T
�k���k�


� 1� 2�max�P�0���2
;max � 2�max�P�0�� ~�T�k� ~��k�

� c6�1� a1�min�P� ~�T�k� ~��k�


where a1 ≜
2�max�P�0��

�min�P��1�2�max�P�0���2
;max 


> 0 and c6 ≜ 1� 2�max�P�0��
�2
;max > 0. Therefore,

1�����������������������������������������������������
1� a1�min�P� ~�T�k� ~��k�

q � �����
c6
p ���������

��k�
p

which together with Eq. (C12) implies that, for all k � k2,

j‘�k�j � �����
c6
p ���������

��k�
p

jzr�k�j � c5
Xnu�d
i�d
k��k� � ��k � i�k

Therefore, for all k � k2,

‘2�k� �
� �����

c6
p ���������

��k�
p

jzr�k�j � c5
Xnu�d
i�d
k��k� � ��k � i�k

�
2

� 2c6��k�z2r�k� � 2c25

�Xnu�d
i�d
k��k� � ��k � i�k

�
2

� 2c6��k�z2r�k� � 2nu�1c25
Xnu�d
i�d
k��k� � ��k � i�k2 (C13)

It follows from statement 2 of Lemma 3 that

lim
k!1

Xk
j�0

��j�z2r�j�

exists. Furthermore, it follows from statement 3 of Lemma 3 that, for
all i� d; . . . ; nu � d,

lim
k!1

Xk
j�0
k��j� � ��j � i�k2

exists. Thus, Eq. (C13) implies that

lim
k!1

Xk
j�0

‘2�j�

exists.
Now, show that limk!1W� ~��k�� � 0. SinceW andV are positive

definite, it follows from Eq. (C8) that
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0 � lim
k!1

Xk
j�0

W� ~��j�� � lim
k!1

Xk
j�0
��V�j� � a1�1 lim

k!1

Xk
j�0

‘2�j�

� V� ~��0�� � lim
k!1

V� ~��k�� � a1�1 lim
k!1

Xk
j�0

‘2�j�

� V� ~��0�� � a1�1 lim
k!1

Xk
j�0

‘2�j�

where the upper and lower bound imply that all limits exist. Thus,
limk!1W� ~��k�� � 0. SinceW� ~��k�� is a positive-definite function
of ~��k�, it follows that limk!1k ~��k�k � 0.

To prove that u�k� is bounded, first note that since limk!1
k ~��k�k � 0 and ��k� is bounded, it follows that ��k� is bounded.
Next, since ��k� is bounded, it follows from Lemma 4 that ��k� is
bounded. Furthermore, since y�k� and u�k� are components of
��k� 1�, it follows that y�k� and u�k� are bounded.

To prove that limk!1z�k� � 0, note that it follows from Eq. (C3)
and the fact that kBzf�k�k � jzf�k�j that

lim
k!1
jzf�k�j � lim

k!1
k ~��k� 1�k � kAkF lim

k!1
k ~��k�k � 0

Since limk!1zf�k� � 0, zf�k� � ��m�q�1�z�k�, and �m�q��
qnm ��m�q�1� is an asymptotically stable polynomial, it follows that
limk!1z�k� � 0. □

Appendix D: Lemma used in the Proof of Theorem 3

The following lemma is used in the proof of Theorem 3. This
lemma is presented for an arbitrary feedback controller given by
Eq. (6) where the controller parameter vector ��k� is time varying.
More precisely, the following lemmadoes not depend on the adaptive
law used to update ��k� provided that such an adaptive law satisfies
the assumptions in the lemma.

Lemma 4. Consider the open-loop system (1) satisfying
Assumptions 1–9. In addition, consider a feedback controller given
by Eq. (6) that satisfies the following assumptions:

Assumption D1. ��k� is bounded.
Assumption D2. limk!1k��k� � ��k � 1�k � 0.
Assumption D3. There exist 
 > 0 and k1 > 0 such that, for all

k � k1 and for all i� 1; . . . ; nu, jM�	i; k�j � 
.
Then, for all initial conditions x0, there exist k2 > 0, c1 > 0, and

c2 > 0, such that, for all k � k2, and, for all N � 0; . . . ; nu,
k��k � d � N�k � c1 � c2k��k�k.

Proof. For all k � nc, consider the (2nc � 1)th-order nonminimal-
state-space realization of Eq. (6) given by

��k� 1� �Ac�k���k� � Bcy�k� �Drrf�k� 1� (D1)

u�k� � �T�k���k� (D2)

where

A c�k�≜Anil � B�T�k�; Bc ≜ E2nc�1

Furthermore, note that, for all k � nc,Ac�k� has nc � 1 poles at zero
and nc poles that coincide with the roots of M�z; k�, which implies
that, for all k � nc, and, for all i� 1; . . . ; nu,

det�	iI2nc�1 �Ac�k�� � 	nc�1i M�	i; k� (D3)

Next, rewrite the closed-loop system (37) and (38) as

��k� 1� � ~A�k���k� �D1 w�k� �Drrf�k� 1� (D4)

y�k� � C��k� �D2 w�k� (D5)

where ~A�k�≜A � B ~�
T�k� �A� B�T�k� �Anil � BcC� B�T

�k�, and note that ~A�k� �Ac�k� � BcC. Define the closed-loop
dynamics matrix of Eqs. (D1), (D2), (D4), and (D5)

~A cl�k�≜ A B�T�k�
BcC Ac�k�

� �

Since, for all i� 1; . . . ; nu, 	i is a zero of �A;B; C�, it follows that
C�	iI2nc�1 �A��1B� 0. Since, for all i� 1; . . . ; nu, 	i is not an
eigenvalue of A, it follows that 	iI2nc�1 �A is nonsingular.
Therefore, using Proposition 2.8.3 in [33] implies that

det�	iI � ~Acl�k�� � det�	iI �A� det�	iI �Ac�k�
� BcC�	iI �A��1B�T�k��
� det�	iI �A� det�	iI �Ac�k�� (D6)

Next, consider the change of basis

~A�k� B�T�k�
0 Anil

� �
� I 0

�I I

� �
~Acl�k�

I 0

I I

� �

which implies that, for all k � nc, and, for all i� 1; . . . ; nu,

det�	iI � ~Acl�k�� � det�	iI � ~A�k�� det�	iI �Anil�

� 	2nc�1i det�	iI � ~A�k�� (D7)

Combining Eqs. (D3), (D6), and (D7) yields

det�	iI � ~A�k�� � 	�nci M�	i; k� det�	iI �A�

and it follows from Assumption D3 that, for all k � k1, and, for all
i� 1; . . . ; nu,

j det�	iI � ~A�k��j � j	�nci jjM�	i; k�jj det�	iI �A�j
� 
j	�nci jj det�	iI �A�j (D8)

Since mini�1;...;nu j	
�nc
i j> 0 and mini�1;...;nu j det�	iI2nc�1 �A�j>

0, it follows from Eq. (8) that, for all k � k1, and, for all
i� 1; . . . ; nu,

0< 
2 � j det�	iI � ~A�k��j (D9)

where


2 ≜ 


�
min

i�1;...;nu
j	�nci j

��
min

i�1;...;nu
j det�	iI2nc�1 �A�j

�
> 0

Next, write �u�q� as

�u�q� � �u;0qnu � �u;1qnu�1 � 	 	 	 � �u;nu�1q� �u;nu

where �u;0 � 1 and �u;1; . . . ; �u;nu 2 R. Furthermore, for i � 0 and
j � i, define

�i;j�k�

≜
�

~A�k � d � i� 1� ~A�k � d � i� 2� 	 	 	 ~A�k � d � j�; j > i;
I; j� i

(D10)

and define

��k�≜
Xnu
i�0

�u;i�i;nu
�k� (D11)

It follows from Eqs. (D10) and (D11) that

��k���k�d�nu���u;0 ~A�k�d�1� 	 	 	 ~A�k�d�nu���k�d�nu�

��u;1 ~A�k�d�2� 	 	 	 ~A�k�d�nu���k�d�nu�

��u;2 ~A�k�d�3� 	 	 	 ~A�k�d�nu���k�d�nu�

�		 	��u;nu�1 ~A�k�d�nu���k�d�nu�
��u;nu��k�d�nu� (D12)
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Next, repeatedly substituting Eq. (D4) into Eq. (D12), and using
Eqs. (10) and (D10) yields

��k���k � d � nu� �
1

�d
��k� �

Xnu�1
i�0

Xnu�1
j�i

�u;i�i;j�k�

� �D1 w�k � d � 1 � j� �Drrf�k � d � j�
 (D13)

Now, show that there exist k2 � 0 and �
 > 0 such that, for all
k � k2,��k� is nonsingular and �
 � j det��k�j. First, note that, for
all i� 0; . . . ; nu � 1,

�i;nu
�k� � ~A�k � d � 1 � i� ~A�k � d � 2 � i� 	 	 	 ~A�k � d � nu�

� ~A�k � d � 1 � i� 	 	 	 ~A�k � d � nu � 2� ~A2�k � d � nu�

� ~A�k � d � 1 � i� 	 	 	 ~A�k � d � nu � 2�

� � ~A�k � d � nu � 1� � ~A�k � d � nu�
 ~A�k� d � nu�

��i;nu�2�k� ~A
2�k � d � nu�

��i;nu�2�k���k � d � nu � 1��nu�1;nu�k� (D14)

where, for all k > nc,

��k�≜ ~A�k� � ~A�k � 1� � B���k� � ��k � 1�
T (D15)

Therefore, repeating the process in Eq. (D14) yields

�i;nu
�k� � ~Anu�i�k � d � nu�

�
Xnu�i�1
j�1

�i;nu�1�j�k���k � d � nu � j��nu�j;nu�k� (D16)

It follows from Eqs. (D11) and (D16) that ��k� ��1�k� ��2�k�
where

�1�k�≜
Xnu
i�0

�u;i ~A
nu�i�k � d � nu� (D17)

�2�k�≜
Xnu
i�0
�u;i

� Xnu�i�1
j�1

�i;nu�1�j�k���k�d�nu� j��nu�j;nu�k�
�

(D18)

It follows from Assumption D2 that limk!1��k� � 0. Since, in
addition, ��k� is bounded according to Assumption D1, it follows
that for all i � 0 and for all j � i, �i;j�k� is bounded. Therefore,
limk!1�2�k� � 0, which implies that there exists �k1 � 0, such that,
for all k � �k1,

1

2
j det�1�k�j � j det��1�k� ��2�k��j � j det��k�j (D19)

Next, note that �1�k� � ��1�nu�	1I � ~A�k � d � nu�� 	 	 	
�	nu I � ~A�k � d � nu��. Therefore, it follows from Eq. (D9) that,
for all k � k1 � d� nu,

0< 
nu2 � j det�1�k�j (D20)

Combining Eqs. (D19) and (D20) implies that, for all
k � k2 ≜max� �k1; k1 � d� nu�,

0< �
 � j det��k�j (D21)

where �
≜ 1
2

nu2 , and thus ��k� is nonsingular.

Since, for all k � k2, ��k� is nonsingular, it follows from
Eq. (D13) that, for all k � k2,

��k � d � nu� �
1

�d
��1�k���k�

���1�k�
Xnu�1
i�0

Xnu�1
j�i

�u;i�i;j�k�Drrf�k � d � j�

���1�k�
Xnu�1
i�0

Xnu�1
j�i

�u;i�i;j�k�D1 w�k � d � 1 � j� (D22)

For all N � 0; . . . ; nu, substituting Eq. (D22) into Eq. (D4) nu � N
times implies

��k � d � N� � 1

�d
�N;nu

�k���1�k���k�

��N;nu�k���1�k�
Xnu�1
i�0

Xnu�1
j�i

�u;i�i;j�k�Drrf�k � d � j�

��N;nu
�k���1�k�

Xnu�1
i�0

Xnu�1
j�i

�u;i�i;j�k�D1 w�k � d � 1 � j�

�
Xnu�N
i�1

�N;nu�i�k��D1 w�k � d � nu � i�

�Drrf�k� 1 � d � nu � i�


which implies

k��k � d � N�k � 1

j�dj
k�A�k�k
j det��k�j k�N;nu

�k�kk��k�k

� k�
A�k�k

j det��k�j k�N;nu
�k�kkDrk

�
�Xnu�1
i�0

Xnu�1
j�i
j�u;ijk�i;j�k�kjrf�k � d � j�j

�

� k�
A�k�k

j det��k�j k�N;nu
�k�kkD1k

�
�Xnu�1
i�0

Xnu�1
j�i
j�u;ijk�i;j�k�kk w�k � d � 1 � j�k

�

� kD1k
�Xnu�N

i�1
k�N;nu�i�k�kk w�k � d � nu � i�k

�

� kDrk
�Xnu�N

i�1
k�N;nu�i�k�kjrf�k� 1 � d � nu � i�j

�
(D23)

where k 	 k is the Euclidean norm for vectors and the corresponding
induced norm for matrices, and �A�k� is the adjugate of ��k�.

Since ��k� is bounded, it follows that ��k� is bounded, and thus
�A�k� is bounded, which implies that c� ≜ supk�0k�A�k�k exists.
Furthermore, since ��k� is bounded, it follows that, for all i � 0, and,
for all j � i, �i;j�k� is bounded, and thus c� ≜ supi;j�0;...;nu
�supk�0k�i;j�k�k� exists. In addition, since  w�k� and r�k� are
bounded, it follows that c ≜ supk�0k w�k�k exists and cr ≜
supk�0jrf�k�j exists. Therefore, it follows fromEqs. (D21) and (D23)
that

k��k � d � N�k � c�c�
�
j�dj

k��k�k

� �nu � N��kD1kc � kDrkcr�c�

�
c��kD1kc � kDrkcr�c2�

�


�Xnu�1
i�0
�nu � i�j�u;ij

�

� c1 � c2k��k�k

where
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c1 ≜ �nu � N��kD1kc � kDrkcr�c�

�
c��kD1kc � kDrkcr�c2�

�


�Xnu�1
i�0
�nu � i�j�u;ij

�

and
c2 ≜

c�c�
�
j�dj

□
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